Tested Objects 1.0: FitNesse: Developers Guide

FitNesse Integration for Naked Objects 4.0.x
Version 0.1

Copyright © 2009 Dan Haywood

Permission is granted to make and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies.

PIEIACE .ot e et naee s %
I 1 1 o [Tox o o PRSP PRPPRPRR 1
[=S SR 01 =0 = (o L SRR 3
FZ Y/ oo [=SSP 5

2.1. DITECLONY SEIUCKUIEceiiuiiiiee it e ettt e s e e e e e s e e s s e e e e nnre e e e 5

2.2. M@IN IMOUUIESeeiiiieeeii ittt ettt e e e e e e e et e e e e s s st eeaeeessssnstreneeaaeesnannes 6

2.3, SUPPOIT MOUUIES ...t e e 6

2.4, TESAPP MOAUIE ..ottt e e e e e e e e e s rraeeaaae s 7

3. Building, Documenting and Deployingccoooveviiiiiiii 9

00 I I = 101 o o T 0 1 TS0 U o 9

3.2. ContribUtiNGg CRANGESceeiiiiiiee et e e e e 9

3.3, REIEASE PrOCESSvveiiiiieeiiiiitiiee ettt e e e e e ettt e e e e e e e s sae b ae e e e e e e e s annnraneeeeaaens 10

A, DESION NOLES ...eeiiiieee ittt e e e e sttt e e e e e e e s e e e e e e s s st e e et e aeeeaaantetaaeeeaeeessannnrernreeaeens 13

Preface

Tested Objectsis asister project for the Naked Objects framework, providing integration with FitNesse
to enable agile acceptance (or scenario) testing. The integration bundles the FitNesse wiki server and
provides a set of generic Fitnesse fixtures that interact with the domain model in the same manner that a
Naked Objects viewer does. It also provides a Maven archetype to get you started quickly.

This developers guide explains how to build Tested Objects from source, allowing you to contribute back
and extend the range of capabilities.

If you are simply interested in using Tested Objects as-is, please consult the user guide. (Note that the
archetype aso has a built-in user guide).

Tested Objects is hosted on SourceForge, and is licensed under Apache Software License v2. Naked
Objectsis aso hosted on SourceForge, and is also licensed under Apache Software License v2.

http://testedobjects.sourceforge.net
http://starobjects.org
http://nakedobjects.org
http://fitnesse.info
http://maven.apache.org
http://testedobjects.sourceforge.net
http://www.apache.org/licenses/LICENSE-2.0.html
http://sourceforge.net/projects/nakedobjects

Chapter 1
Introduction

This chapter introduces the organization of this devel opers' guide.

Tested Objects is one of a number of sister projects for Naked Objects. Each of these sister projects
are organized along the same general lines: they have the same directory structure, the same coding
conventions, a shared "corporate” Maven POM to define build artifacts, the same release process and so
on.

The Star Objects project isan umbrellafor al of these sister projects. As such it holds the corporate POM
and anumber of other shared artifacts, such as asite template so that the Maven sitesfor all sister projects
have the same general look-n-feel. It also hosts a Maven snapshot repository and release repository.

In addition, the Sar Objects also has a developers guide (available online here). This describes how to
build any given sister project from source, how to be a contributor, and how (as aproject admin) to release
code artifacts to the repositories and how to deploy the site.

This developers guide therefore provides only a high level outline of the structure of the modules, and
provides only summary steps for how to build and deploy the sister projects. Any variations from the
standard procedures described in the Star Objects devel opers guide are also given.

Tihs guide also provides design/implementation notes, in ???. If you are thinking about or fixing abug or
contributing anew feature, you might find some starting points here (over and above reading the Javadocs,
tests and code, of course).

http://starobjects.sourceforge.net
http://starobjects.sourceforge.net/m2-site/main/documentation/docbkx/pdf/developers-guide.pdf

Part |
FitNesse Integration

Currently Tested Objectsprovidesonly aFitNesseintegration, so thisdevelopersguide consistsof asingle
part.

Chapter 2
Modules

This chapter describes the modules that make up Tested Objects' FitNesse integration.

The modules that make up Tested Objects' FitNesse integration follow the general conventions of sister
projects, with a main module, a support module and a testapp module. You can read more about this
in the Star Objects developer guide. However, the directory structure this does not quite follow the
standard layout for sister projects: the main and support modules are nested under t r unk/ f i t nesse/
(as opposed to directly under t r unk/). That's because Tested Objects may be extended to support other
testing frameworks (eg Concordion) in the future.

2.1. Directory Structure

The source code directory structure for Tested Objectsis as follows:

t runk/
fitnesse/ # Fi t Nesse support
mai n/ # main rel ease for FitNesse, including Maven site
fixtures/ # the FIT fixtures that integrate NOw th FitNesse
docunent ati on/ # this documentation
support/ # support - built after main rel ease
rel ease/ # defines dependencies for projects using the 'fixtures' nodul e
ar chet ype/ # archetype
t est app/ # application for testing - not rel eased
tags/
fitnesse/ main # tags for trunk/fitnesse/ main
fitnessel/ support # tags for trunk/fitnesse/support

Note that this directory structure is nested under t runk/fitnesse/ (as opposed to directly under
t runk/). Asisusual, though, to ensure that tags go into the correct location when releasing, the mvn-
r el ease- pl ugi n plugin has been configured (using <t agBase>) to override its default location.

Y ou can checkout the entire trunk using Subversion:

http://concordion.org

Modules Main Modules

svn co https://testedobjects.svn.sourceforge. net/svnroot/testedobjects/trunk ~/testedobjects/
trunk

2.2. Main Modules
Asthe above shows, there are two separate released artifacts:

The main (or g. st arobj ects. tested. fitnesse: mai n) is a multimodule project that defines the
main artifacts that implement Tested Objects’ FitNesse support. It contains;

« thefitnessefixtures (or g. st arobj ects. test ed. fi t nesse: fi xt ures)

This contains implementations of FitNesse's fixture APl which in turn interact with the domain
application.

It uses or g. st arobj ects.tested. fitnesse: main asits parent (and thus inherits transitively
from the corporate POM).

 the documentation (or g. st ar obj ects. test ed. fi t nesse: docunent at i on)
The documentation submodule contains the user and developers' guides
It lsousesorg. starobj ects.tested. fitnesse: mai n asits parent.

It uses the corporate POM (org.starobjects.star:corporate) as its parent.

2.3. Support Modules

Thesupport (or g. st ar obj ects. t est ed. fi t nesse: suppor t) isamultimodul e project that provides
anumber of supporting artifacts. It contains:

e an additional release module (or g. st ar obj ects. t est ed. fi t nesse: r el ease)

This is a convenience module that can be used as a parent by projects using the FitNesse integration
provided by Tested Objects (for example, as generated by the archetype, below). Its primary purpose
isto define a consistent set of versionsin <dependencyManagenent > tag.

Note that this module does not inherit from the main POM, instead it inherits from the Naked
Objects Framework's equivalent or g. nakedobj ect s: r el ease module (thus defining a stack of
dependencies).

 thearchetype (or g. st arobj ects. tested. fi t nesse: ar chet ype)

Thisisreleased after the main release, since it needs to be updated to depend on the released versions
of org. starobjects.tested.fitnesse: main. Its version numbers are the same as those of
org.starobjects.tested. fitnesse: main.

This module aso inherits from the starobjects corporate POM
(org. st arobj ects. star:corporate).

Like main, the support module also uses the corporate POM (org.starobjects.star:corporate) asits parent.

Modules TestApp Module

2.4. TestApp Module

The testapp module is a test application for adhoc testing of FitNesse. It is not areleased artifact.

Tested Objects 1.0: FitNesse: Developers
Guide (0.1) 7

Chapter 3
Building, Documenting and Deploying

This chapter outlines how to build, document and deploy Tested Objects.

The build, documentation and deployment process follows the genera standard for sister projects, as
documented in the Star Objects developers' guide. The one exception is that deploying Tested Objects
also involves deploying FitNesse itself; FitNesse is not formally released into Maven central repo, so the
starobjects repo hosts it instead.

The sections in this chapter correspond to the parts one, two and three of Sar Objects developers' guide.

3.1. Building from Source
There are no special steps required for building Tested Objects from source.

In particular, note that the FitNesse jar is not prerequisite software; instead it is managed as a Maven
module (see Section 3.3, “Release Process”).

Y ou can therefore just follow the processes described in Star Objects devel opers' guide:
* build the main:

$ cd ~/testedobjects/trunk/fitnesse/ main
$ nmvn clean install

* build the support:

$ cd ~/testedobjects/trunk/fitnessel/support
$ mvn clean install

3.2. Contributing Changes

There are no special considerations for contributing changes for Tested Objects. Y ou can therefore just
follow the processes described in Sar Objects developers' guide.

Building, Documenting and Deploying Release Process

3.3. Release Process

There are one specia consideration for releasing/deploying for Tested Objects. Specifically, FitNesse
is not currently available through Maven central repository. It must therefore be uploaded into the Star
Objects Maven repo, at http://starobjects.sourceforge.net/m2-repo/release/. This is what is referenced
from the Tested Objects POMs.

FitNesse itself is available from http://fitnesse.org/FrontPage.FitNesseDevel opment.DownL oad.

Toingtall in the Sar Objects repository (on the actual server), use:

$ nvn install:install-file
-D file=fitnesse-20090818.j ar
-D groupld=org. fitnesse
-D artifactld=fitnesse
-D versi on=20090818
- D packagi ng=j ar
- D gener at ePon¥true

— e e —

Although FitNesse is open source, the FitNesse download site does not make the source code available.
So it'salso manually downloaded a ZIP of the source from the GIT source code repository, and then rezip
it up in the same format that Maven prepares. | installed this also:

$ nvn install:install-file
-D file=fitnesse-20090818-sources.jar
-D groupld=org. fitnesse
-D artifactld=fitnesse
-D versi on=20090818
- D packagi ng=j ar
-D cl assi fier=sources
- D gener at ePon¥true

— e o e —

Otherwise than these points you can just follow the processes described in Star Objects developers guide,
to:

 for deployments, update ~/ . m2/ setti ngs. xm :

<servers>
<server>
<i d>t est edobj ect s-site</id>
<user nane>xxx</ user nane>
<passwor d>xxx</ passwor d>
</ server>
</ servers>

« make documentation changes to DocBook and to the site
« deploy the sitelocally

$ cd ~/testedobjects/trunk/fitnesse/ main
$ nvn site-deploy -D dist=loca

Thiswill deploy to/ t mp/ n2-si t es/ t est edobj ect s.
« deploy a code snapshot
First, deploy main:

$ cd ~/testedobjects/trunk/fitnesse/ nain
$ nvn clean install deploy -D dist=renote

Then, deploy support:

10

http://starobjects.sourceforge.net/m2-repo/release
???

Building, Documenting and Deploying Release Process

$ cd ~/testedobjects/trunk/fitnessel/support
$ nvn clean install deploy -D dist=renpte

* tag arelease and then deploy a code release

TODO: ydetails required here.

» deploy asite remotely
then, deploy the site (you'll also need a sourceforge termina session running; see Star Objects
developers guide for details):

$ cd ~/testedobjects/trunk/fitnesse/nain
$ mvn site-deploy -D dist=renpte

Tested Objects 1.0: FitNesse: Developers
Guide (0.1) 11

Chapter 4
Design Notes

This chapter will contain design notes on the implementation of the FitNesse integration.

TODO: describe theinternal design/architecture here...

13

	Tested Objects 1.0: FitNesse: Developers Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Part I. FitNesse Integration
	Chapter 2. Modules
	2.1. Directory Structure
	2.2. Main Modules
	2.3. Support Modules
	2.4. TestApp Module

	Chapter 3. Building, Documenting and Deploying
	3.1. Building from Source
	3.2. Contributing Changes
	3.3. Release Process

	Chapter 4. Design Notes

