
Tested Objects 1.0 Users' Guide
FitNesse Integration for Naked Objects 4.0.x

Version 0.1

Copyright © 2009 Dan Haywood

Permission is granted to make and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies.

iii

Preface .. v
1. Introduction .. 1

1.1. Scenario Testing (aka Agile Acceptance Testing) ... 1

1.2. Introduction to FitNesse ... 1

1.3. How Tested Objects' Integration Works .. 2

2. Using the FitNesse Archetype ... 5
2.1. Prerequisites .. 5

2.2. Running the Archetype ... 5

2.3. Starting FitNesse Wiki ... 10

2.4. Setting up to Run Tests .. 11

2.5. Running the Tests .. 12

3. Hints and Tips .. 15
3.1. Separate In-Progress Stories from the Backlog ... 15

3.2. Use a Story Page to Collect A Set of Scenario Tests .. 15

3.3. Organize Completed Stories by Component ... 15

3.4. Structure your test using Given/When/Then ... 16

3.5. Using the RunViewer fixture .. 16

3.6. Factor out common "Given"s .. 16

3.7. Use a Declarative Style for Page Names .. 17

3.8. Run against a real database ... 17

3.9. Set up Continuous Integration ... 17

A. Reference (Online User Guide) .. 19
A.1. Bootstrapping .. 19

A.2. SetUp ... 22

A.3. User Interaction ... 25

A.4. Debugging .. 30

A.5. Tear Down .. 32

v

Preface
Tested Objects is a sister project for the Naked Objects framework, providing integration with FitNesse

to enable agile acceptance (or scenario) testing. The integration bundles the FitNesse wiki server and

provides a set of generic Fitnesse fixtures that interact with the domain model in the same manner that a

Naked Objects viewer does. It also provides a Maven archetype to get you started quickly.

This user guide describes how to use Tested Objects to test your Naked Objects domain applications

through FitNesse. Much of this guidance relates to using the Maven archetype; for ease of reference the

archetype creates an online user guide within the FitNesse wiki. If you are interested in building Tested

Objects from source code (perhaps with a view to contributing to or extending the capabilities of Tested

Objects itself) then please see the developers' guide.

Tested Objects is hosted on SourceForge, and is licensed under Apache Software License v2. Naked

Objects is also hosted on SourceForge, and is also licensed under Apache Software License v2.

http://starobjects.org
http://nakedobjects.org
http://fitnesse.org
http://testedobjects.sourceforge.net
http://www.apache.org/licenses/LICENSE-2.0.html

1

Chapter 1

Introduction

1.1. Scenario Testing (aka Agile Acceptance Testing)

Prior to agile development, requirements gathering for systems was traditionally performed by business

analysts discussing requirements with the business, and expressing those requirements in documentation,

such as Word specs and perhaps spreadsheets. The acceptance criteria for such requirements were

often only sketched out, if at all; it would normally fall to the system testers to write acceptance tests

for the requirements, through a mixture of consulting the original (by now out-of-date) requirements

documentation and (as often as not) reverse-engineering the implementation.

Scenario testing combines the requirements capture and the acceptance test criteria in a single form,

through scenarios. As before, these requirements are in a form that a non-technical domain expert from

the business can understand. What differs though is that these scenarios can be used directly exercise the

system, and so also represent the acceptance tests for the scenario. Moreover, the results of these tests are

rendered in such a way that the business can understand, and thus can help determine if the code is at fault

or the test. Once implemented, the acceptance tests also act as a regression suite for the system.

Scenario tests tend to act against a complete system, or sometimes at a subsystem-level. At any rate at

a granularity that makes sense to a non-technical businesss person. Compare this to unit testing which

exercises the behaviour / method of a single class.

Scenario testing is more usually called "agile acceptance testing", but I find that term rather clumsy. Other

names also exist, including behaviour-driven development, and example-driven development. Here we

use our own term "scenario testing".

1.2. Introduction to FitNesse

FitNesse is an framework to enable scenario testing. It builds upon the earlier FIT framework, which

executes tests expressed in terms of tables. FitNesse sits on top of FIT1, allowing the tables to be written

within a Wiki, and spawning off FIT to run the tests. The results of the tests are shown as annotated tests,

as shown below.

1In fact, FitNesse as of end 2008 has a replacement test execution architecture, called SLIM.

http://fitnesse.org
http://fit.c2.com/
http://fitnesse.org/FitNesse.UserGuide.SliM

Introduction How Tested Objects' Integration Works

2

This makes it easy for non-technical business users to both author new tests, and to view their execution.

It also creates an efficient feedback loop; a FitNesse test will "keep on going" even if it hits a failure. Thus

the developer can identify several issues and fix them in a single pass.

Another way to think of FitNesse is as a replacement presentation layer, hitting the underlying domain

model in the same way that the regular UI would.

If using FitNesse on a "regular" project then the developer writes glue code that in effect take the values

out of the wiki page, and use them to interact with the system. They then return a success/failure response

which FitNesse then uses to annotate the results page. FitNesse calls this glue code a "fixture". There is

some overlap with Naked Objects' own use of that term. However, whereas a Naked Objects fixture is

only used to setup the initial state of a test, a FitNesse fixture not only does that but it also is used to

execute the test proper.

It is relatively straightforward to integrate FitNesse into a continuous integration environment; see

Section 3.9, “Set up Continuous Integration” for further details.

1.3. How Tested Objects' Integration Works

Although you could test a Naked Objects application using vanilla FitNesse, this would entail you having

to write all the FitNesse fixtures to interact with the domain objects. You would also need to come up

with a representation for the tables.

Tested Objects' FitNesse integration is designed to let you use FitNesse to test your Naked Objects

application without all this hassle. We can use the same Naked Objects metamodel that is used for the

auto-generation of its generic OOUIs to create a set of generic fixtures that interact with the domain object

similarly. Using Tested Objects is therefore just a matter of using these fixtures out-of-the-box.

Introduction How Tested Objects' Integration Works

Tested Objects 1.0 Users' Guide (0.1) 3

There are many such fixtures, but the one you will use the most often is the UsingNakedObjectsViewer

fixture (see the section called “UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup”). The

screenshot below shows it in use for checking assertions at the end of a test (the "Then").

To explain this: the "tomsClaim1" is an alias to an object that has been created or obtained previously.

The "perform" column lists the verb to do, in this case all checks. Other things that can be done include

invoke actions, set properties and so forth. The "on member" column specifies the property, collection or

action of the domain object being interacted with.

The following screenshot shows how the test is annotated after a successful run:

Introduction How Tested Objects' Integration Works

4

The end-user should be able to follow this test and could, if they want, run through the same set of steps

manually themselves. Or, of course, they could just look at the test results.

5

Chapter 2

Using the FitNesse Archetype

Like Naked Objects, Tested Objects provides a Maven archetype to get you up and running with quickly.

Tested Objects' FitNesse archetype runs against any Naked Objects application, and provides a new xxx-

fitnesse project (where xxx is the root artifact Id). This project bundles FitNesse, contains the FitNesse

wiki pages that contain the tests (and also a user guide), and allows the FitNesse wiki server to be run.

Out-of-the-box the archetype will generate a set of tests for the example claims application in the

nakedobjects-4.0.x-for-maven.zip download1, under examples/claims). These are great to try

out Tested Objects for the first time, and they also provide some ideas for you to structure your own test

suite.

The xxx-fitnesse project generated by the archetype is intended to be included as a module of the

parent pom (xxx/pom.xml) --- in Maven parlance, it is a partial archetype. Providing that your run the

archetype in the correct directory, Maven will automatically include the newly generated project in the

parent project.

2.1. Prerequisites

To use the archetype you'll need to install Maven (and there's a good chance you've done this already if

you're using the Naked Objects Maven archetype).

Optionally (and recommended) you can install the m2eclipse plugin for Eclipse IDE (again, there's a good

chance you've done this too).

2.2. Running the Archetype

You can either run the archetype from the command line (and then import into Eclipse if using m2eclipse),

or run the archetype using m2eclipse straight off.

1See http://sourceforge.net/projects/nakedobjects

http://maven.apache.org
http://m2eclipse.sonatype.org/
http://eclipse.org
http://sourceforge.net/projects/nakedobjects

Using the FitNesse Archetype Running the archetype from the command line

6

Running the archetype from the command line

Navigate to the parent directory of the project (that holds the parent pom.xml). The directions here are

for the examples/claims project.

TODO: Naked Objects 4.0.0 released examples/claims as org.nakedobjects.distribution:examples-claims.

In 4.0.1 (the plan is) for it to be released as org.nakedobjects.examples:claims. In the screenshots that

follow I've hacked the 4.0.0 pom to change the groupId and artifactId. However, I've provided the

command that kicks the whole thing for both 4.0.0 and 4.0.1

To run the archetype from the command line (against NOF 4.0.0):

$ cd $NO_HOME/examples-claims

$ mvn archetype:generate \

 -D archetypeCatalog=http://starobjects.sourceforge.net/m2-repo/snapshot \

 -D archetypeGroupId=org.starobjects.tested.fitnesse \

 -D archetypeArtifactId=archetype \

 -D archetypeVersion=1.0-beta-3-SNAPSHOT \

 -D groupId=org.nakedobjects.distribution \

 -D artifactId=claims-fitnesse \

 -D parentArtifactId=claims \

 -D package=org.nakedobjects.examples.claims.fitnesse \

 -D version=4.0.0

or against NOF 4.0.1:

$ cd $NO_HOME/examples-claims

$ mvn archetype:generate \

 -D archetypeCatalog=http://starobjects.sourceforge.net/m2-repo/snapshot \

 -D archetypeGroupId=org.starobjects.tested.fitnesse \

 -D archetypeArtifactId=archetype \

 -D archetypeVersion=1.0-beta-3-SNAPSHOT \

 -D groupId=org.nakedobjects.examples \

 -D artifactId=claims-fitnesse \

 -D parentArtifactId=claims \

 -D package=org.nakedobjects.examples.claims.fitnesse \

 -D version=4.0.1

The groupId:parentArtifactId:version tuple should correspond to the parent pom (so, for

4.0.0, that is org.nakedobjects.distribution:claims:4.0.0, and for 4.0.1 it is

org.nakedobjects.examples:claims:4.0.1). Note that the parentArtifactId is not one of the

standard Maven properties, instead it is an additional property mandates by the Tested Objects' archetype.

(The archetype uses this property to derive the names of some the other projects to include in the

dependencies).

The artifactId then is the artifact of the FitNesse project being generated, so is typically parentname-

fitnesse (so here: claims-fitnesse).

The output is shown below:

Using the FitNesse Archetype Running the archetype from the command line

Tested Objects 1.0 Users' Guide (0.1) 7

This will generate a claims-fitnesse directory, and update the parent pom.xml file.

We can then import into project into Eclipse, using File > Import > Maven

Using the FitNesse Archetype Running the archetype from m2eclipse

8

Running the archetype from m2eclipse

As an alternative to running the archetype from the command line, you can instead run the archetype

using m2eclipse.

However, m2eclipse does not (seem to) understand partial archetypes, and so the project cannot be

generated in a subfolder of the parent project. Instead, I recommend you create the project alongside the

parent (eg in examples/claims-fitnesse).

TODO: These notes are slightly incomplete; it is also necessary to specify the archetype catalog in the

Windows>Preferences. However, m2eclipse 0.9.8 (the latest 'stable' version at the time of writing) fails

to pick up snapshot archetypes from remote catalogs. The workaround is either to use the command line

once (this will copy the archetype into your local repository) or alternatively achieve the same thing by

building the FitNesse code from scratch, as described in the developers' guide.

So, use File > New > Project, then Maven > Maven Project to bring up the wizard:

Using the FitNesse Archetype Running the archetype from m2eclipse

Tested Objects 1.0 Users' Guide (0.1) 9

Specify the directory. Note that this cannot be a directory that contains a pom.xml file.

Select the archetype. (Note that the screenshot here shows the archetype in the "Default Local" catalog ...

that's because I've built the archetype from source.).

Using the FitNesse Archetype Starting FitNesse Wiki

10

Specify the groupId, artifactId (eg claims-fitnesse), version and package. Also specify the

parentArtifactId as the parent project's artifactId (eg claims):

Hit Finish and you will be in more-or-less the same place as if you had generated the archetype from the

command line and then imported. The only thing different is that the new fitnesse project will not be in

the parent project's modules.

Therefore, navigate to the parent project's <modules> region, and add:

<modules>

 <module>dom</module>

 <module>fixture</module>

 <module>service</module>

 <module>commandline</module>

 <module>webapp</module>

 <module>../claims-fitnesse</module>

</modules>

The instructions in the wiki do assume that you have done this.

2.3. Starting FitNesse Wiki

Once the fitnesse project has been imported you can start the wiki. Navigate to ide/eclipse/launch

and there will be a launch configuration:

Using the FitNesse Archetype Setting up to Run Tests

Tested Objects 1.0 Users' Guide (0.1) 11

Start by right clicking and selecting run as. The FitNesse wiki should start on port 9090:

2.4. Setting up to Run Tests

Using your favorite browser, navigate to http://localhost:9090/FrontPage; you should see the introductory

page:

Before we can run the generated tests there are a couple of things we need to take care of (both are

documented on FrontPage). First, we need to copy the application into a location so that FitNesse can find

it. This is done by simply running mvn clean install on the project:

http://localhost:9090/FrontPage

Using the FitNesse Archetype Running the Tests

12

(Note, if for any reason you didn't include the xxx-fitnesse project into the parent project, you'll need to

run mvn clean install for the xxx-fitnesse project as well).

Secondly, the pages generated by the archetype use the nakedobjects.properties to bootstrap Naked

Objects. By default, this is assumed to be in ../commandline/config/nakedobjects.properties.

If this isn't the case, then edit the BootStrapNakedObjects page as required:

2.5. Running the Tests

If you are trying out the archetype against the examples/claims application then you'll probably want to

run the existing tests to check everything works.

The tests are organized into a single application suite, ClaimsAppSuite. This in turn defines two subsuites:

Using the FitNesse Archetype Running the Tests

Tested Objects 1.0 Users' Guide (0.1) 13

FitNesse will automatically invoke all tests in the hierarchy, therefore just press the Suite button on the left:

If you've run the archetype against your own project though, then you can either delete these

ClaimsAppSuites, or leave them around for reference. To ensure that they don't accidentally run, use the

Properties button (on the left hand side) and deselect the Suite and Test properties.

15

Chapter 3

Hints and Tips

This chapter contains a collection of hints, tips and suggestions for writing your own tests.

For further guidance, check out Gojko Adzic's book, Bridging the Communication Gap.

3.1. Separate In-Progress Stories from the Backlog

If you are using an agile methodology then you will be implementing a number of stories per iteration;

the remainder will be in a backlog. When you select a story for implementation, create a new page for

it in a "CurrentIteration" suite. The objective for the team is therefore to get the entire CurrentIteration

suite green.

Other stories that you may have identified but not selected for the iteration can remain in a Backlog suite.

3.2. Use a Story Page to Collect A Set of Scenario Tests

Part of estimating the size of a story includes identifying the acceptance criteria. These can be created as

children of the story page as placeholders, so that the story page becomes a suite. The child scenario tests

can be fleshed out as required with plain text during the estimation meeting, and with actual FitNesse

tests once the iteration starts. The FitNesse !contents instruction will then list all the acceptance criteria

for the story.

For the story page itself, the "as a ... I want ... so that... " template is a good way to summarize the intent

of the story.

3.3. Organize Completed Stories by Component

Once you have completed an iteration and implements its stories, move those stories out to the relevant

component that the story relates to. The scenario tests for stories ultimately are the documentation of the

http://www.acceptancetesting.info/the-book/
http://fitnesse.org/FitNesse.UserGuide.MarkupContents

Hints and Tips Structure your test using Given/When/Then

16

behaviour of the system. A year on you won't remember (and won't care) which iteration you implemented

a story, you'll be searching for it by the component whose behaviour you want to understand.

3.4. Structure your test using Given/When/Then

A standard template for organizing structuring tests is given/when/then1:

• given ... the system is in this particular state

• when ... this interesting thing happens

• then ... these are the consequences

This structure is readily understood by non-technical business users, and helps them (and the team) focus

on the point of the test.

In terms of mechanics, one approach is to put the "given" into the setup page for a test, with the "when"

and the "then" in separate pages. Alternatively, as the archetype does (see Chapter 2, Using the FitNesse

Archetype), you could separate out the "given", the "when" and the "then" into a hierarchy of pages.

• Separating out the "given" from the rest of the test makes it easy to include that given in other tests

(discussed further in Section 3.6, “Factor out common "Given"s”), and it also allows us to run up the

viewer to inspect the setup (see Section 3.5, “Using the RunViewer fixture”).

• Separating out the "then" from the "when" makes it easy to identify the individual post conditions. A

new requirement might mean only the addition of a new post condition. A downside is that the "given"

and "when" will be run for each post-condition, leading to longer test turn-around times.

3.5. Using the RunViewer fixture

One reason that the archetype (Chapter 2, Using the FitNesse Archetype) separates out the "given", "when"

and "then" is so that the "given" - which is often the hardest part to get setup - can be verified independently

from the rest of the test.

To do this, we can use the RunViewer fixture (see the section called “RunViewer”). This will run up the

drag-n-drop viewer at the specified point in the test; a visual equivalent of System.out.println(),

really. We can therefore take the Given page and add a RunViewer fixture at the end.

Note that to do this you must temporarily mark the Given page as a test page.

3.6. Factor out common "Given"s

Just like code, tests need to be actively managed, because if the tests become hard to maintain, they'll

end up being deleted. In fact, we probably should take even more care with the tests than the code if they

represent the primary documentation of the behaviour of the system.

In terms of size, the "given" is far larger than either the "when" or the "then", and therefore this is the area

where tests can quickly become unmaintainable. So instead, factor out your givens into separate pages,

1As first described, I believe, by Dan North in a blog post, Introducing BDD.

http://fitnesse.org/FitNesse.UserGuide.PageProperties
http://dannorth.net/introducing-bdd

Hints and Tips Use a Declarative Style for Page Names

Tested Objects 1.0 Users' Guide (0.1) 17

and then use FitNesse's !include directive to assemble the pages you need (as done by the archetype,

Chapter 2, Using the FitNesse Archetype).

The names of these pages should also follow a declarative style, see Section 3.7, “Use a Declarative Style

for Page Names”.

3.7. Use a Declarative Style for Page Names

When factoring out "given"s (see Section 3.6, “Factor out common "Given"s”), or indeed when writing

the "when"s and the "then"s, use a declarative style for the pages. The page should describe what it does,

not how it does it.

For example, a good page would be "SetUpCountries". It's clear that this will set up all Country reference

data classes. This could be included into a "SetUpReferenceData" page. For transaction data, we could

have a page "JoeBloggsCustomer"; another one again could be "JoeBloggsFiveOrders".

3.8. Run against a real database

The Tested Objects' integration exercises the Naked Objects domain model as configured in

nakedobjects.properties (as per the SetUpConfigDirectory fixture, ???). Out-of-the-box, of course, Naked

Objects uses an in-memory object store, and so there are no issues running one scenario test against

another.

You can if you want though configure Naked Objects to go against a real database, for example by using

the Hibernate-based object store provided by the JPA Objects sister project. In this case you will need

to ensure that you reset the database at the end; Tested Objects doesn't provide any fixtures to help you

though, so you are on your own here. An alternative might be to use JPA Objects against HSQLDB

configured to for in-memory use. This would let you verify your database mappings, but without no need

to tear anything down.

3.9. Set up Continuous Integration

Since Tested Objects is a Maven application, it is easy enough to configure it to run under a CI server,

such as Hudson. If you google around you should be able find a way to publish the FitNesse test results

through Hudson.

http://fitnesse.org/FitNesse.UserGuide.MarkupPageInclude
http://jpaobjects.sourceforge.net
http://hudson-ci.org/
http://andypalmer.com/2009/04/showing-fitnesse-test-results-in-hudson/

19

Appendix A. Reference (Online User
Guide)
For convenience when writing tests the FitNesse wiki pages created by the Maven archetype (see

Chapter 2, Using the FitNesse Archetype) also include an online user guide:

Rather than repeat the text here, this reference guide just consists of screenshotsof the various pages.

A.1. Bootstrapping

The bootstrapping fixtures are used to bootstrap the test framework itself. These are typically referenced

in a "BootstrapNakedObjects" page, included in the test's setup page. One option is to use the FitNesse

SetUp page.

StoryFixture

Sets up the workflow story test. Boilerplate, should always be the first FitNesse fixture included in a page.

http://fitnesse.org/FitNesse.UserGuide.SpecialPages

Reference (Online User Guide) SetConfigDirectory

20

SetConfigDirectory

Specifies the config directory containing nakedobjects.properties. Called after StoryFixture

(see the section called “StoryFixture”), and before InitNakedObjects (see the section called

“InitNakedObjects”). The DebugServices fixture (the section called “DebugServices”) can be used to

debug the set of services specified (after Naked Objects has been initialized).

EnableExploration

Enables exploration actions if required. Should be called before InitNakedObjects (see the section called

“InitNakedObjects”).

Reference (Online User Guide) InitNakedObjects

Tested Objects 1.0 Users' Guide (0.1) 21

Note that when using the DnD or HTML viewers, exploration mode means that there is no need to logon.

For FitNesse tests though you should specify who to login as, see the section called “LogonAs”.

InitNakedObjects

Initializes the Naked Objects runtime using the services specified through the UseConfigDirectory fixture

(see the section called “SetConfigDirectory”).

The CheckSpecificationsLoaded fixture (the section called “CheckSpecificationsLoaded”) can be used to

check which classes have been located from the services as a result of initialization.

Reference (Online User Guide) SetUp

22

A.2. SetUp

The setup fixtures are used to specify the running application for a particular story's setup. Specifically,

this means setting up the services that define the application, the effective date and the effective user. It

also allows the setup of arbitrary objects (typically reference/static data objects; for transactional objects

see the section called “UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup”).

DateIs

Sets the clock to a specific date and time. This installs the FixtureClock as the implementation of the

Clock singleton (in the applib). If this fixture is not called, then the default system clock is used, which

gets the time from the host computer. The DebugClock fixture (the section called “DebugClock”) can be

used to verify the clock state.

LogonAs

Logs on as a specific user.

Unlike Naked Objects' own LogonFixture, the login specified is not remembered to the end of the setup.

In order to run tests as a particular login it should therefore appear towards the end of the setup.

Reference (Online User Guide) AliasServices

Tested Objects 1.0 Users' Guide (0.1) 23

AliasServices

Specifies an alias to services in order to invoke actions upon them. Note that the services are not defined by

this fixture; for that see SetConfigDirectory fixture, section the section called “SetConfigDirectory”. See

also DebugServices (the section called “DebugServices”) to verify the services that have been identified.

Reference (Online User Guide) SetUpObjects

24

SetUpObjects

Initializes objects. Typically used for immutable reference/standing data objects). Can also be to

setup used for transaction/operational data objects (though UsingNakedObjectsViewerForSetup, the

section called “UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup”, is preferable). The

DebugObjectStore fixture (the section called “DebugObjectStore”) can be used to check the state of

objects created.

Reference (Online User Guide) User Interaction

Tested Objects 1.0 Users' Guide (0.1) 25

A.3. User Interaction

User interaction fixtures appear in the main body of the test, for the "given" (to setup the rest of the

state of the system, typically transactional objects), for the "when" (the interaction being tested) or the

"then" (assertions on the state after the interaction being tested).

UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup

Simulates interacting with domain objects as if through a viewer. Interact with objects, check their state,

alias referenced or returned objects.

The "ForSetup" version disables checks for visibility and usability, making it easier to reuse functionality

for setting up objects prior to a test scenario (the "given"). The DebugObjectStore fixture (the section

called “DebugObjectStore”) can be used to check the state of objects created.

Reference (Online User Guide) UsingNakedObjectsViewer /
UsingNakedObjectsViewerForSetup

26

Example usage:

On properties:

Reference (Online User Guide) UsingNakedObjectsViewer /
UsingNakedObjectsViewerForSetup

Tested Objects 1.0 Users' Guide (0.1) 27

On collections:

On actions:

Reference (Online User Guide) CheckList

28

On objects:

CheckList

Check items in list, either precisely or just for presence, using their title. Lists are either aliased results

of actions, or aliased collections within objects.

Typically used in the "Then", though can be helpful as a way of confirming/documenting a "Given".

See also AliasItemsInList (the section called “AliasItemsInList”), which also performs an implicit check

(will fail if the objects are not in the list) and aliases them for further use.

Reference (Online User Guide) AliasItemsInList

Tested Objects 1.0 Users' Guide (0.1) 29

AliasItemsInList

Allows an alias to be associated with items in a list. The list items are located by their title, and are

presumed to exist. This fixture can therefore also be used as a way of checking for presence of items in

a list (similar to CheckList, the section called “CheckList”).

Typically used both in the "Given" (to simplify writing the rest of a test).

Reference (Online User Guide) Debugging

30

A.4. Debugging

Debugging and diagnostics. Useful for checking setup, for example.

DebugServices

Lists service class names, as picked up from configuration. Useful with AliasServices (see the section

called “AliasServices”).

Reference (Online User Guide) DebugClock

Tested Objects 1.0 Users' Guide (0.1) 31

DebugClock

Reads the current value of the clock. Useful for debugging and diagnostics.

DebugObjectStore

Dumps the contents of the object store. Useful for debugging setup (through SetupObjects,

the section called “SetUpObjects”, and UsingNakedObjectsViewerForSetup, the section called

“UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup”).

CheckSpecificationsLoaded

Verifies that listed NakedObjectSpecifications have been loaded into the metamodel.

Reference (Online User Guide) RunViewer

32

RunViewer

Runs up the DnD viewer with the current state of the objects. This is a great way to inspect the state of

the system, for example if a test is failing and you can't see why.

Of course, other alternatives are writing unit tests and debugging with break points. But failing scenario

tests usually arise because of an integration issue between two different bits of the system. Being able to

have a "poke around" can be invaluable.

A.5. Tear Down

The opposite of setting up...

ShutDownNakedObjects

This fixture shuts down the Naked Objects runtime, releasing memory and so on. A good place to put this

is in the test's TearDown page (which could be inherited).

http://fitnesse.org/FitNesse.UserGuide.SpecialPages

	Tested Objects 1.0 Users' Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Scenario Testing (aka Agile Acceptance Testing)
	1.2. Introduction to FitNesse
	1.3. How Tested Objects' Integration Works

	Chapter 2. Using the FitNesse Archetype
	2.1. Prerequisites
	2.2. Running the Archetype
	Running the archetype from the command line
	Running the archetype from m2eclipse

	2.3. Starting FitNesse Wiki
	2.4. Setting up to Run Tests
	2.5. Running the Tests

	Chapter 3. Hints and Tips
	3.1. Separate In-Progress Stories from the Backlog
	3.2. Use a Story Page to Collect A Set of Scenario Tests
	3.3. Organize Completed Stories by Component
	3.4. Structure your test using Given/When/Then
	3.5. Using the RunViewer fixture
	3.6. Factor out common "Given"s
	3.7. Use a Declarative Style for Page Names
	3.8. Run against a real database
	3.9. Set up Continuous Integration

	Appendix A. Reference (Online User Guide)
	A.1. Bootstrapping
	StoryFixture
	SetConfigDirectory
	EnableExploration
	InitNakedObjects

	A.2. SetUp
	DateIs
	LogonAs
	AliasServices
	SetUpObjects

	A.3. User Interaction
	UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup
	CheckList
	AliasItemsInList

	A.4. Debugging
	DebugServices
	DebugClock
	DebugObjectStore
	CheckSpecificationsLoaded
	RunViewer

	A.5. Tear Down
	ShutDownNakedObjects

