Tested Objects 1.0 Users' Guide

FitNesse Integration for Naked Objects 4.0.x
Version 0.1

Copyright © 2009 Dan Haywood

Permission is granted to make and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies.

=10 < T \%

I 1 1 o [Tox o o PRSP PRPPRPRR 1
1.1. Scenario Testing (aka Agile Acceptance TEStNG)cocvvveieiiee e 1
1.2, INtroduCtion T0 FITNESSEcoiiiiiiiitieiee ettt e e e e s e e e e e e e e neeeeeeas 1
1.3. How Tested Objects INtegration WOTKSc.uviiiiiiiiiee it 2
2. USING the FItNESSE AT CNELYPE 5
2.1, PrEFEQUISITESeiiiieieie ittt ettt e e ettt e e e et e e e abb e e e e s bt e e e e enbb e e e e e nnbaeeean 5
2.2. RUNNING the ATCHELYPE ...eeeeeiie e e e et reeaaeas 5
2.3. Starting FItNESSE WIKicvviiiiiiieiiiicce et a e e e s e eneeees 10
2.4, Setting UP 10 RUN TESESuuuiuiuiiiiiiiiiiiiiiiiiiiiiiiinrnainrneerararararnrararararsrnrannsnsnsnsnsnrnsnsnnnrnnes 11
2.5. RUNNING the TESESeiiiiiiiiie ittt e e e e e e e nnee s 12
S o LT a1 3= o B I o PP PUT PP 15
3.1. Separate In-Progress Stories from the Backlogooviiiiiieiiiiiiiieee e 15
3.2. Use a Story Page to Collect A Set Of SCENario TESLSuuviviieeeiiiciiiieeiee e e e 15
3.3. Organize Completed Stories by COMPONENeeviieeiiiiiiiiiiiie e 15
3.4. Structure your test using Given/When/Then ..., 16
3.5. UsiNg the RUNVIEWES TIXTUIEcoiiieiee e e e e e e e 16
3.6. Factor out COMMON "GIVEN"Seeeiiieiiieie i e e e ettt e e e e e e e er e e e e e e s e st beeeeeaeeeeeannneeees 16
3.7. Use a Declarative Style for Page NaIMEScocuiiiiiiiiiieceiieee e 17
3.8. Run against areal databaseeeeviieeiiiiiiiieiic e 17
3.9. Set up ContinUOUS INLEGIAtioNccuviiiiieee e e e e e eanrenes 17
A. Reference (ONliNE USer GUIAE)ccoceeeeiiiiie i 19
0 I = T o £ = o o o SRR 19
FZ S] o TSR SUPRR SRR 22
F AR I U LS [g o (o) SR 25
F N B = o oo g T USSR 30
AL TN DOWN <. 32

Preface

Tested Objectsis a sister project for the Naked Objects framework, providing integration with FitNesse
to enable agile acceptance (or scenario) testing. The integration bundles the FitNesse wiki server and
provides a set of generic Fitnesse fixtures that interact with the domain model in the same manner that a
Naked Objects viewer does. It also provides a Maven archetype to get you started quickly.

This user guide describes how to use Tested Objects to test your Naked Objects domain applications
through FitNesse. Much of this guidance relates to using the Maven archetype; for ease of reference the
archetype creates an online user guide within the FitNesse wiki. If you are interested in building Tested
Objects from source code (perhaps with aview to contributing to or extending the capabilities of Tested
Objectsitself) then please see the devel opers guide.

Tested Objects is hosted on SourceForge, and is licensed under Apache Software License v2. Naked
Objectsis aso hosted on SourceForge, and is also licensed under Apache Software License v2.

http://starobjects.org
http://nakedobjects.org
http://fitnesse.org
http://testedobjects.sourceforge.net
http://www.apache.org/licenses/LICENSE-2.0.html

Chapter 1
Introduction

1.1. Scenario Testing (aka Agile Acceptance Testing)

Prior to agile development, requirements gathering for systems was traditionally performed by business
analysts discussing requirements with the business, and expressing those requirements in documentation,
such as Word specs and perhaps spreadsheets. The acceptance criteria for such requirements were
often only sketched out, if at all; it would normally fall to the system testers to write acceptance tests
for the requirements, through a mixture of consulting the original (by now out-of-date) requirements
documentation and (as often as not) reverse-engineering the implementation.

Scenario testing combines the requirements capture and the acceptance test criteria in a single form,
through scenarios. As before, these requirements are in aform that a non-technical domain expert from
the business can understand. What differs though is that these scenarios can be used directly exercise the
system, and so also represent the acceptance tests for the scenario. Moreover, the results of these tests are
rendered in such away that the business can understand, and thus can help determineif the codeisat fault
or the test. Once implemented, the acceptance tests also act as aregression suite for the system.

Scenario tests tend to act against a complete system, or sometimes at a subsystem-level. At any rate at
a granularity that makes sense to a hon-technical businesss person. Compare this to unit testing which
exercises the behaviour / method of asingle class.

Scenario testing ismore usually called "agile acceptance testing”, but | find that term rather clumsy. Other
names also exist, including behaviour-driven development, and example-driven development. Here we
use our own term "scenario testing”.

1.2. Introduction to FitNesse

FitNesse is an framework to enable scenario testing. It builds upon the earlier FIT framework, which
executes tests expressed in terms of tables. FitNesse sits on top of FITL, allowi ng the tables to be written
within aWiki, and spawning off FIT to run the tests. The results of the tests are shown as annotated tests,
as shown below.

Ln fact, FitNesse as of end 2008 has a replacement test execution architecture, called SLIM.

http://fitnesse.org
http://fit.c2.com/
http://fitnesse.org/FitNesse.UserGuide.SliM

Introduction How Tested Objects' Integration Works

€« C||+2 localhost » O F-
. g
A h # w
' w ClaimsAppSuite :
SuItE RESULTS [history] M.
| Suite ‘ ‘Test Pages: 4 right, 0 wrong, 0 ignored, 0 exceptions Assertions: 51 right, 0 wrong, 0 ignored, 0 except%r% |

Edit TEST SUMMARIES

Properties FIT:FIT.FITSERVER

Refactor 18 right, 0 wrong, 0 ignored, 0 exceptions ClaimsSuite.GivenEmployeeWithApproverSuite. WhenCreateClaimSuite. ThenDefaultsOkTest
17 right, 0 wrong, 0 ignored, 0 exceptions ClaimsSuite.GivenNewlyCreatedClaimSuite. WhenModifyAndSaveClaimSuite. ThenSavedOkTest
8 right, 0 wrong, 0 ignored, 0 exceptions EmployeesSuite.GivenEmployeesSuite. WhenListAllSuite. ThenAllReturnedTest

8 right, 0 wrong, 0 ignored, 0 exceptions EmployeesSuite.GivenEmployeesSuite. WhenListAllSuite. ThenCertainReturnedTest

TesT QuTPUT
TesT SYSTEM: FIT:FIT.FITSERVER

ClaimsSuite.GivenEmployeeWithApproverSuite.WhenCreateClaimSuite. ThenDefaultsOkTest

Where Used

Search

Files

Versions

Recent Changes

Top
| User Guide ‘ _" Set Up: .ClaimsAppSuite.SetUp (edit) Expand All | Collapse All
’W‘ » page: <GivenEmployeeWithApproverSuite.TheGiven (edit) Expand All | Collapse All

™ Included pazge: <WhenCreateClaimSuite.TheWhen (edit) Expand All | Collapse All
then ...
using naked objects viewer
on object | alias result as | perform on member | that it value
tomsClaim1 check object is not saved
tomsClaim1 check property |Date contains 02-Mar-2007
localhost:3030/ClaimsAppSuite ClaimsSuite. GivenEmployeeWithApproversuite . |~ T [~

This makes it easy for non-technical business users to both author new tests, and to view their execution.
It also creates an efficient feedback loop; aFitNessetest will "keep on going” evenif it hitsafailure. Thus
the developer can identify several issues and fix them in asingle pass.

Another way to think of FitNesse is as a replacement presentation layer, hitting the underlying domain
model in the same way that the regular Ul would.

If using FitNesse on a""regular" project then the devel oper writes glue code that in effect take the values
out of the wiki page, and use them to interact with the system. They then return a success/failure response
which FitNesse then uses to annotate the results page. FitNesse calls this glue code a "fixture". Thereis
some overlap with Naked Objects own use of that term. However, whereas a Naked Objects fixture is
only used to setup the initial state of a test, a FitNesse fixture not only does that but it also is used to
execute the test proper.

It is relatively straightforward to integrate FitNesse into a continuous integration environment; see
Section 3.9, “ Set up Continuous Integration” for further details.

1.3. How Tested Objects' Integration Works

Although you could test a Naked Objects application using vanilla FitNesse, thiswould entail you having
to write all the FitNesse fixtures to interact with the domain objects. Y ou would also need to come up
with arepresentation for the tables.

Tested Objects FitNesse integration is designed to let you use FitNesse to test your Naked Objects
application without all this hassle. We can use the same Naked Objects metamodel that is used for the
auto-generation of its generic OOUIsto create a set of generic fixturesthat interact with the domain object
similarly. Using Tested Objectsistherefore just amatter of using these fixtures out-of-the-box.

Introduction How Tested Objects' Integration Works

There are many such fixtures, but the one you will use the most often is the UsingNakedObjectsViewer
fixture (see the section called “UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup”). The
screenshot below shows it in use for checking assertions at the end of atest (the "Then™).

)] ClaimsAppSuite.ClaimsSuite.GivenApproverSuite. WhenCreateClaimSuite. ThenDefaultsOkTest - Mozilla Firefox
File Edit View History Bookmarks Tools Help

— e 0 7
- e 7ot |_1'] http:/flocalhost:9090/Claims AppSuite. ClaimsSuite. GivenApproverSuite. WhenCreateClaimSuite, ThenDefaultsOkTest T T ‘ - 7’
|_1'] ClaimsAppSuite.ClaimsSuite.GivenAp... - -

ClaimsAppSuite. ClaimsSuite. GivenApproverSuite. WhenCreateClaimSuite.

ThenDefaultsOkTest

Test
— » Set Up: .ClaimsAppSuite.SetUp (edit Fxpand All | Collapse All

i
L d page: <GivenApproverSuite.TheGiven (edit) Expand All | Collapse All:

Properties

e: <WhenCreateClaimSuite. TheWhen (edit) Expand All | Collapse All;

Refactor

then ...
Where Used

T

| Search | using naked objects viewer
Files on object | alias result as | perform on member | that it value
tomsClaim1 check object is not saved
Versions
check property |Date contains 02-Mar-2007

Recent Changes
Description | is empty

user Guide Status contains New

Test History Claimant tomEmployee

Approver tomsApprover

check collection | ltems is empty

ar Down: .ClaimsAppSuite.TearDown (edit) Expand All | Collapse All

http: {flocalhost: 3050/ClaimsAppSuite, ClaimsSuite, GivenApproverSuite, WhenCreateClaimSuite ThenDefaultsCkTest? test #‘

To explain this: the "tomsClaim1" is an alias to an object that has been created or obtained previously.
The "perform” column lists the verb to do, in this case al checks. Other things that can be done include
invoke actions, set properties and so forth. The "on member" column specifies the property, collection or
action of the domain object being interacted with.

The following screenshot shows how the test is annotated after a successful run:

Tested Objects 1.0 Users' Guide (0.1) 3

Introduction How Tested Objects' Integration Works

Test Results: ClaimsAppSuite.ClaimsSuite.GivenApproverSuite.WhenCreateClaimSuite.ThenDefaultsOkTest - Mozilla Firefox

Eile Edit W¥ew Higtory Bookmarks Tools Help
@ - c A ey |j http:/flocalhost: 2050/ ClaimsAppSuite, ClaimsSuite, GivenApproverSuite, WhenCreateClaimSuite, ThenDefaultsOkTest*test i? - '-." Google)-
|| Test Results: ClaimsAppSuite.Claims... -+ -
ClaimsAppSuite. ClaimsSuite. GivenApproverSuite. WhenCreateClaimSuite. A
TEST RESULTS [history] Output
. . . - O
Test |Assert|ons: 18 right, 0 wrong, 0 ignored, 0 exceptions
|
§> Set Up: .ClaimsAppSuite.SetUp (edit) Expand All | Collapse All
o ool
§> Included page: <GivenApproverSuite.TheGiven (edit Expand All | Collapse All
» Included page: <WhenCreateClaimSuite. TheWhen (edit) Expand All | Collapse All
Where Used
then ...
Search
using naked objects viewer
on object | alias result as | perform on member | that it value
Versions
tomsClaim1 check object is not saved
tomsClaim1 check property |Date contains 02-Mar-2007
tomsClaim1 check property | Description | is empty
tomsClaim1 check property |Status contains New
tomsClaim1 check property | Claimant contains tomEmployee
tomsClaim1 check property |Approver | contains tomsApprover
tomsClaim1 check collection | ltems is empty
' Tear Down: .ClaimsAppSuite. TearDown (edit) Expand All | Collapse All
Done -*f

The end-user should be able to follow this test and could, if they want, run through the same set of steps
manually themselves. Or, of course, they could just look at the test results.

Chapter 2
Using the FitNesse Archetype

Like Naked Objects, Tested Objects provides a Maven archetype to get you up and running with quickly.
Tested Objects FitNesse archetype runs against any Naked Objects application, and provides anew xxx-
fitnesse project (wherexxx istheroot artifact 1d). This project bundles FitNesse, containsthe FitNesse
wiki pages that contain the tests (and also a user guide), and allows the FitNesse wiki server to be run.

Out-of-the-box the archetype will generate a set of tests for the example claims application in the
nakedobj ect s- 4. 0. x- f or - maven. zi p download®, under exanpl es/ cl ai ns). Thesearegreat totry
out Tested Objects for the first time, and they also provide some ideas for you to structure your own test
suite.

The xxx-fit nesse project generated by the archetype is intended to be included as a module of the
parent pom (xxx/ pom xmi) --- in Maven parlance, it is a partial archetype. Providing that your run the
archetype in the correct directory, Maven will automatically include the newly generated project in the
parent project.

2.1. Prerequisites

To use the archetype you'll need to install Maven (and there's a good chance you've done this already if
you're using the Naked Objects Maven archetype).

Optionally (and recommended) you can install the m2eclipse plugin for Eclipse IDE (again, there'sagood
chance you've done this too).

2.2. Running the Archetype

Y ou can either run the archetype from the command line (and then import into Eclipseif using m2eclipse),
or run the archetype using m2eclipse straight off.

1See http://sourceforge.net/projects/nakedobjects

http://maven.apache.org
http://m2eclipse.sonatype.org/
http://eclipse.org
http://sourceforge.net/projects/nakedobjects

Using the FitNesse Archetype Running the archetype from the command line

Running the archetype from the command line

Navigate to the parent directory of the project (that holds the parent pom.xml). The directions here are
for the examples/claims project.

TODO: Naked Objects 4.0.0 rel eased exampl es/claims as org.nakedobj ects.di stribution:examples-claims.
In 4.0.1 (the plan is) for it to be released as org.nakedobjects.examples.claims. In the screenshots that
follow I've hacked the 4.0.0 pom to change the groupld and artifactld. However, |'ve provided the
command that kicks the whole thing for both 4.0.0 and 4.0.1

To run the archetype from the command line (against NOF 4.0.0):

$ cd $NO_HOVE/ exanpl es-cl ai s
$ nvn archetype: generate \

-D archet ypeCat al og=http://starobjects. sourceforge. net/ n2-repo/ snapshot \
ar chet ypeGroupl d=or g. st arobj ects. tested. fi t nesse \
archetypeArtifactld=archetype \
ar chet ypeVer si on=1. 0- bet a- 3- SNAPSHOT \
gr oupl d=or g. nakedobj ects. di stri bution \
artifact!ld=claims-fitnesse \
parent Artifact!ld=cl ains \
package=or g. nakedobj ect s. exanpl es. cl ai ns. fitnesse \
-D version=4.0.0

lvvlvilvilvivilv)

or against NOF 4.0.1.

$ cd $NO_HOVE/ exanpl es-cl ai s
$ nvn archetype: generate \
D archet ypeCat al og=htt p:// st arobj ects. sour cef or ge. net/ n2-repo/ snapshot \
D archetypeG oupl d=org. st arobj ects.tested. fitnesse \
D archetypeArtifactl|d=archetype \
D archet ypeVer si on=1. 0- bet a- 3- SNAPSHOT \
- D groupl d=or g. nakedobj ect s. exanpl es \
D artifactld=clainms-fitnesse \
D parentArtifactld=clains \
D package=or g. nakedobj ect s. exanpl es. cl ai ns. fitnesse \
D version=4.0.1

The groupld:parentArtifactid:version tuple should correspond to the parent pom (so, for
4.0.0, that is org.nakedobjects.distribution:clains:4.0.0, and for 401 it is
or g. nakedobj ect s. exanpl es: cl ai ns: 4. 0. 1). Note that the parentArtifactld is not one of the
standard Maven properties, instead it isan additional property mandates by the Tested Objects archetype.
(The archetype uses this property to derive the names of some the other projects to include in the
dependencies).

The artifactld then is the artifact of the FitNesse project being generated, o is typically parentname-
fitnesse (so here: ¢l ai ms-fi t nesse).

The output is shown below:

Using the FitNesse Archetype Running the archetype from the command line

-19[x|

31# mvn archetype:generate -D archetypeGroupId=org.starobjects.tested -D archety
e nteqratIDn -D ar‘chetypev’er .0- be‘ta 3-5NAPSHOT -D gre

Reactor build c
Example Claims
Example Claims
Example Claims Services
Example Claims Fxtures
Example Claims Command Line
Example Claims Web App'hcatm)n
Searching repositi r plugin with pref x: ‘archetype

Building Example Claims
task-segment: [archetype: ‘aggregator-style)

Preparing archetype:generate

Mo goals needed for project - pping

Setting property: classpath.resource.loader.class

i aderResour celoader ' .

Setting pr velocimacro.messages. DI’|

Setting pr resource. Toader "

Setting pr resource. manage! 'qu“henfnund

[archetype:generate]

Generating]Eft in Interactive mode

mi Using the one from [org.starobjects.tested:
a NAPSHOT] found in catalog local

iConfirm pruper‘ties confi
testedDbjgttsFitMesse_fer‘ 3 1 0-beta-3-SNAPSHOT

jects. examples

g.apache. velocity. runtime. exception. ReferenceException: reference
archetype-resources/pom.xml [line 77, column 34] : §{testedObjects.fi
not a valid reference.

conds
[INFO] Finished at Fl‘1 Auq 21 14:59:49 BST 2009
[INFO] Final Memo 13M/24M

Thiswill generate a claims-fitnesse directory, and update the parent pom.xml file.

We can then import into project into Eclipse, using File > Import > Maven

mp ponts ‘Jd

Select
hY

Maven Projects E 5

Select an impart source:

== General
B, Archive File
1 Existing Projects into Warkspace
[, Flle System
ne
EL preferences

= cvs

= Maven

(= Run/Debug

(= svN

(= Tasks

(= Team

=8

EEEE

Tested Objects 1.0 Users' Guide (0.1) 7

Using the FitNesse Archetype Running the archetype from m2eclipse

—ImportMaven projects: J Lil a‘
Maven Projects
Select Maven projects
Root Directory: D
Projects:
=0 Select Al
O
O Deselect All
O
g
|
claims-fitnesse /pom.xml - org.nakedobjects. examples daims-fitnesse: 4.0.0:ar
[add project(s) to warking set
¥ Advanced
@

Running the archetype from m2eclipse

As an alternative to running the archetype from the command line, you can instead run the archetype
using m2eclipse.

However, m2eclipse does not (seem to) understand partial archetypes, and so the project cannot be
generated in a subfolder of the parent project. Instead, | recommend you create the project alongside the
parent (eg in exanpl es/ cl ai ns-fit nesse).

TODO: These notes are dlightly incomplete; it is also necessary to specify the archetype catalog in the
Windows>Preferences. However, m2eclipse 0.9.8 (the latest 'stable’ version at the time of writing) fails
to pick up snapshot archetypes from remote catalogs. The workaround is either to use the command line
once (this will copy the archetype into your local repository) or aternatively achieve the same thing by
building the FitNesse code from scratch, as described in the devel opers' guide.

So, use File > New > Project, then Maven > Maven Project to bring up the wizard:

Using the FitNesse Archetype Running the archetype from m2eclipse

Select a wizard
Create a Maven Project

Wizards:

‘::Js"s':sx: ‘

= General

= ovs

EHE Java

E| 1= Maven

. ﬂ Checkout Maven Projects from SCM
1% Maven Module

@ Maven Project
SVN

(2= Examples

©)

Specify the directory. Note that this cannot be a directory that contains a pom.xml file.

New Maven project = 3
Enter a location for the project.

[Jcreate a simple project {skip archetype selection)

{se defauit Workspace location;
Location;

[] add project(s) to working set
Working set: New...

b Advanced

©)

Select the archetype. (Note that the screenshot here shows the archetypein the "Default Local" catalog ...
that's because I've built the archetype from source.).

New Maven project = 3
Select an Archetype
Catalog: |Daﬁult Local [Conﬁgure‘..]

Bitter: | test | %

Group Id Artifact Id Version

org.starobjects. tested fitnesse-integration

‘ Tested Objects Fitnesse Integration (Archetype)

Show the last version of Archetype only Add Archetype...

» Advanced

®

Tested Objects 1.0 Users' Guide (0.1) 9

Using the FitNesse Archetype Starting FitNesse Wiki

Specify the groupld, artifactld (eg cl ai ns-fitnesse), version and package. Also specify the
parentArtifactld as the parent project's artifactld (eg cl ai ns):

— HeyMavern) Prujsct L _‘_JLE

New Maven project .
Specify Archetype parameters M |

Group Id: | org.nakedobjects,examples
ArtifactId: | daims-fitnesse

Version: 4.0.0

Package:

Properties:

Name Value
testedObjectsFithesse. ., 1.0-beta-3-SMAPSHOT

rootArtifactld daims

¥ Advanced

(£ [< Back] Finish ” Cancel

Hit Finish and you will be in more-or-less the same place asif you had generated the archetype from the
command line and then imported. The only thing different is that the new fitnesse project will not be in
the parent project's modules.

Therefore, navigate to the parent project's <nodul es> region, and add:

<nmodul es>

<nmodul e>donx/ nodul e>

<nmodul e>fi xt ur e</ nodul e>

<nmodul e>ser vi ce</ nodul e>

<nmodul e>commandl i ne</ nodul e>

<nmodul e>webapp</ modul e>

<nmodul e>. . /cl ai ns-fitnesse</ nodul e>
</ nodul es>

The instructions in the wiki do assume that you have done this.

2.3. Starting FitNesse Wiki

Once the fitnesse project has been imported you can start the wiki. Navigateto i de/ ecl i pse/ | aunch
and there will be alaunch configuration:

% Package Explorer 1 = G:(} -
- 523 claims
weJ
®- = daims-commandiine
W
#-j= daims-dom
=524 claims-fitnesse
®-[# srjmain fjava
- (# srejmainjresources
®-(srjtestfiava
& -B8h JRE System Library [125E-1.5]
- B, Maven Dependendies
== ide
== edipse
=& launch

B[sre
(= target
Tl pom.xml
g
#- = daims-fixture
- 523 claims-service
- 524 dlaims-webapp

10

Using the FitNesse Archetype Setting up to Run Tests

Start by right clicking and selecting run as. The FitNesse wiki should start on port 9090:

El console &3 X % | G mlElEl jmal = Rt
fitnesse-wikiserver [Java Application] C:\Program Files\Javaljdk1.6.0_07pinYjavaw.exe (12 Aug 2009 19:43:47)
IFit,NEssE (v20090112) Started...

port: 9090

root page: fitnesse.wiki.FileSystemPage at ./src\main\resources\FitnesseRoot
logger: none

authenticator: fitnesse.authentication.Promiscuoushuthenticator

html page factory: fitnesse.html.HtmlPageFactory
page version expiration set to 0 days.

2.4. Setting up to Run Tests

Using your favorite browser, navigate to http://localhost:9090/FrontPage; you should see the introductory
page:

| Google' = [E1[>|

[FrontPage > o5

< C localhost > O~ -

FrontPage wuamq

Edit
BEFORE YOU START

Properties
Make sure you have run

REEERT mvn clean install

Where Used in the claims-fitnesse parent project. This will put your application plus its dependencies onto the classpath of
the FitNesse testrunner. You will also need to do this whenever you have changed your application and want to
test it through FitNesse. For development, you can also use the Trinidad test runner to test in-process. This won't
require running mvn install.

Search
Files

Versions

MaiN CONTENT

Recent Changes

* ClaimsAppSuite

User Guide o FitNesse test suite for the claims demo application generated by the Naked Objects application archetype.

e * _.FitNesse.UserGuide
o Descriptions of table fixtures available for testing Naked Objects applications.
o also accessible via 'User Guide' button on left hand side.

AR

BooTSTRAPPING, DATE AND LOGON FIXTURES

(Reference from test scenarios using linclude).

* BootstrapNakedObjects
» AliasServices

® Datels?Mar?007
.

LogonAsFsmith

By default this archetype assumes that the nakedohjects.properties file resides in ../commandline/config. Edit
BootstrapNakedObjects if this is not the case.

Before we can run the generated tests there are a couple of things we need to take care of (both are
documented on FrontPage). First, we need to copy the application into alocation so that FitNesse can find
it. Thisis done by simply running mvn clean install on the project:

Tested Objects 1.0 Users' Guide (0.1) 11

http://localhost:9090/FrontPage

Using the FitNesse Archetype Running the Tests

» C:\WINDOWS\system32\cmd.

web Application ..

Integration ..

(Note, if for any reason you didn't include the xxx-fitnesse project into the parent project, you'll need to
run mvn clean install for the xxx-fitnesse project as well).

Secondly, the pages generated by the archetype usethenakedobj ect s. properti es tobootstrap Naked
Objects. By default, thisisassumedtobein. . / cormandl i ne/ confi g/ nakedobj ect s. properti es.
If thisisn't the case, then edit the BootStrapNakedObjects page as required:

[Edit BootstrapMakedObjects:

= C || v% | http://localhost:9090/BootstrapNakedObjects?edit » O~ F~
=]
BootstrapNakedObject
00LstrapNake 1ECLS
Eoim Pace:
|! lorg.starobjects. tested. Titnesse. StoryFixture|
!|set config directory|c:\java\nakedobjects-4.0.0\examples\claims'commandlineiconfig|
!'|enable exploration|
!]init naked objects|
4
[Save] [Spreadsheet to FitNesse] [FitNesse to Spreadsheet] [Format] |:|wrap
Hints:
Use alt+s (Windows) or control+s (Mac 05 X) to save your changes. Or, tab from the text area to the "Save" ~]

2.5. Running the Tests

If you are trying out the archetype against the examples/claims application then you'll probably want to
run the existing tests to check everything works.

Thetestsare organized into asingle application suite, ClaimsAppSuite. Thisin turn definestwo subsuites:

12

Using the FitNesse Archetype Running the Tests

[claimsAppsuite

Recent Changes

User Guide

Test History

€ | C || ¥ hitp://localhost:9090/Cla > B F-
A““
S * 1]
@_ ClaimsAppSuite uea
These tests are for the example Naked Objects application generated by the nakedobjects-application Maven archetype.
The tests can be run either from here as a single suite (Suite button on left hand side), or run individually from each page (Test button).
P i
Contents:
o Given Employee With Approver Suite * ...
Where Used o Given Newly Created Claim Suite * ...
-
+ Employees Suite
o Given Employees Suite * ...
Files o Set Up Employees
+ Set Up
EEITE # Tear Down
® 777 Debugging And Diagnostics

FitNessewill automatically invokeall testsinthe hierarchy, thereforejust pressthe Suite button on the | eft:

[suite Resuits: ClaimsAppsuite >

<« C || Y% nhiip:/flocalhost:2090/Cial uite > OG- F-
=]
e, &
\’) ClaimsAppSuite -
Suite ResuLts [history] Output
‘ Suite ‘ |Test Pages: 4 right, 0 wrong, 0 ignored, 0 exceptions Assertions: 51 right, 0 wrong, 0 ignored, 0 exceptions
Edit TEST SUMMARIES
Properties AT:FIT.FITSERVER
Refactor 18 right, 0 wrong, 0 ignored, 0 exceptions ClaimsSuite.GivenEmployeeWithApproverSuite. WhenCreateClaimSuite. ThenDefaultsOkTest

17 right, 0 wrong, 0 ignored, 0 exceptions ClaimsSuite.GivenNewlyCreatedClaimSuite. WhenModifvAndSaveClaimSuite. ThenSavedOkTest

Where Used
8 right, 0 wrong, 0 ignored, 0 exceptions EmployeesSuite. GivenEmployeesSuite. Whenl istAllSuite. ThenAlReturnedTest

Search 8 right, 0 wrong, 0 ignored, 0 exceptions EmployeesSuite. GivenEmployeesSuite. Whenl istAllSuite. ThenCertainReturnedTest

Test OuTPUT
TeST SYSTEM: FIT:FIT.FITSERVER

Files
Versions n - < - n < <
ClaimsSuite.GivenEmployeeWithApproverSuite.WhenCreateClaimSuite. ThenDefaultsOkTest

Top
Expand All | Collapse All

Recent Changes

* Sot Up: .ClaimsAppSuite. SetUp (edit)

c
I3
i
©
<
=
@

> Included page: <GivenEmployeeWithApproverSuite.TheGiven (edit) Expand All | Collapse Aug

> Included page: <WhenCreateClaimSuite. TheWhen (edit)

Test History

]

Expand All | Collapse All|

then ...
using naked objects viewer
on object | alias result as | perform on member | that it value
tomsClaim1 check object is not saved
tomsClaim1 check property |Date contains 02-Mar-2007
localhost:3090/C ite. Claimssuite. GivenEmployesiWithApp W... | a B

If you've run the archetype against your own project though, then you can either delete these
ClaimsAppSuites, or leave them around for reference. To ensure that they don't accidentally run, use the
Properties button (on the left hand side) and deselect the Suite and Test properties.

Tested Objects 1.0 Users' Guide (0.1) 13

Chapter 3
Hints and Tips

This chapter contains a collection of hints, tips and suggestions for writing your own tests.

For further guidance, check out Gojko Adzic's book, Bridging the Communication Gap.

3.1. Separate In-Progress Stories from the Backlog

If you are using an agile methodology then you will be implementing a number of stories per iteration;
the remainder will be in a backlog. When you select a story for implementation, create a new page for
it in a"Currentlteration" suite. The objective for the team is therefore to get the entire Currentlteration
suite green.

Other storiesthat you may have identified but not selected for the iteration can remain in aBacklog suite.

3.2. Use a Story Page to Collect A Set of Scenario Tests

Part of estimating the size of a story includes identifying the acceptance criteria. These can be created as
children of the story page as placeholders, so that the story page becomes a suite. The child scenario tests
can be fleshed out as required with plain text during the estimation meeting, and with actual FitNesse
tests once the iteration starts. The FitNesse ! contents instruction will then list all the acceptance criteria
for the story.

For the story page itself, the"asa... | want ... so that... " template is a good way to summarize the intent
of the story.

3.3. Organize Completed Stories by Component

Once you have completed an iteration and implements its stories, move those stories out to the relevant
component that the story relates to. The scenario tests for stories ultimately are the documentation of the

15

http://www.acceptancetesting.info/the-book/
http://fitnesse.org/FitNesse.UserGuide.MarkupContents

Hints and Tips Structure your test using Given/When/Then

behaviour of the system. A year on you won't remember (and won't care) which iteration you implemented
astory, you'll be searching for it by the component whose behaviour you want to understand.

3.4. Structure your test using Given/When/Then

A standard template for organizing structuring testsis given/when/thenlz
e given... the systemisin this particular state
« when ... thisinteresting thing happens

« then ... these are the consequences

This structure is readily understood by non-technical business users, and hel ps them (and the team) focus
on the point of the test.

In terms of mechanics, one approach is to put the "given" into the setup page for atest, with the "when"
and the "then" in separate pages. Alternatively, as the archetype does (see Chapter 2, Using the FitNesse
Archetype), you could separate out the "given”, the "when" and the "then" into a hierarchy of pages.

» Separating out the "given" from the rest of the test makes it easy to include that given in other tests
(discussed further in Section 3.6, “Factor out common "Given"s’), and it also allows us to run up the
viewer to inspect the setup (see Section 3.5, “Using the RunViewer fixture™).

» Separating out the "then" from the "when" makes it easy to identify the individual post conditions. A
new requirement might mean only the addition of anew post condition. A downsideisthat the "given"
and "when" will be run for each post-condition, leading to longer test turn-around times.

3.5. Using the RunViewer fixture

Onereason that the archetype (Chapter 2, Using the FitNesse Archetype) separates out the"given”, "when"
and "then" isso that the"given" - whichisoften the hardest part to get setup - can be verified independently
from the rest of the test.

To do this, we can use the RunViewer fixture (see the section called “RunViewer”). Thiswill run up the
drag-n-drop viewer at the specified point in the test; a visual equivaent of Syst em out . println(),
really. We can therefore take the Given page and add a RunViewer fixture at the end.

Note that to do this you must temporarily mark the Given page as atest page.

3.6. Factor out common "Given"s

Just like code, tests need to be actively managed, because if the tests become hard to maintain, they'll
end up being deleted. In fact, we probably should take even more care with the tests than the code if they
represent the primary documentation of the behaviour of the system.

Interms of size, the"given" isfar larger than either the "when" or the "then", and therefore thisisthe area
where tests can quickly become unmaintainable. So instead, factor out your givens into separate pages,

IAsfirst described, | believe, by Dan North in ablog post, Introducing BDD.

16

http://fitnesse.org/FitNesse.UserGuide.PageProperties
http://dannorth.net/introducing-bdd

Hints and Tips Use a Declarative Style for Page Names

and then use FitNesse's linclude directive to assemble the pages you need (as done by the archetype,
Chapter 2, Using the FitNesse Archetype).

The names of these pages should also follow adeclarative style, see Section 3.7, “Use a Declarative Style
for Page Names”.

3.7. Use a Declarative Style for Page Names

When factoring out "given"s (see Section 3.6, “Factor out common "Given"s’), or indeed when writing
the "when"s and the "then"s, use a declarative style for the pages. The page should describe what it does,
not how it doesit.

For example, agood page would be" SetUpCountries”. It's clear that thiswill set up all Count ry reference
data classes. This could be included into a " SetUpReferenceData’ page. For transaction data, we could
have a page " JoeBloggsCustomer"; another one again could be " JoeBloggsFiveOrders'.

3.8. Run against a real database

The Tested Objects integration exercises the Naked Objects domain model as configured in
nakedobj ects.properties (as per the SetUpConfigDirectory fixture, ??7?). Out-of-the-box, of course, Naked
Objects uses an in-memory object store, and so there are no issues running one scenario test against
another.

You canif you want though configure Naked Objects to go against areal database, for example by using
the Hibernate-based object store provided by the JPA Objects sister project. In this case you will need
to ensure that you reset the database at the end; Tested Objects doesn't provide any fixtures to help you
though, so you are on your own here. An alternative might be to use JPA Objects against HSQLDB
configured to for in-memory use. Thiswould let you verify your database mappings, but without no need
to tear anything down.

3.9. Set up Continuous Integration

Since Tested Objects is a Maven application, it is easy enough to configure it to run under a Cl server,
such as Hudson. If you google around you should be able find a way to publish the FitNesse test results
through Hudson.

Tested Objects 1.0 Users' Guide (0.1) 17

http://fitnesse.org/FitNesse.UserGuide.MarkupPageInclude
http://jpaobjects.sourceforge.net
http://hudson-ci.org/
http://andypalmer.com/2009/04/showing-fitnesse-test-results-in-hudson/

Appendix A. Reference (Online User
Guide)

For convenience when writing tests the FitNesse wiki pages created by the Maven archetype (see
Chapter 2, Using the FitNesse Archetype) a so include an online user guide:

Google | =11
[FitNesse, UserGuide P+
€ C |l ¥ localhost » O- F~
Eithesse.
UserGuide
FoRrRMATTING

See WikiFormatting for examples of supported wiki markup.

Refactor
FixTURE TABLES
Type Table Name Purpose

Files Bootstranin Used for bootstrapping the test framework itself. These are typically referenced in .BootstrapNakedObjects which
PPINS | s included in the test suite's setup page.

Versions
StoryFixture Sets up the workflow story test. Should appear first.
SetConfigDirectory Specifies the config directory containing nakedobjects. properties

EnableExploration Enables exploration actions if required
InitNakedObjects Use to initialize Naked Objects runtime.

Setup Used to initialize a particular story's setup. Typically referenced in the test suite or story's own setup page
Datels Sets the clock to a specific date and time

Logonas or SwitchUser Logs on as a specific user

AliasServices Aliases services so that actions can be invoked upon them
SetlpObjects Initializes objects. Can use for either reference data or operational data

User

interaction Appear in the main body of the test

Simulates interacting with the domain objects as if through a viewer. Also use to

UsingNakedObjectsVi 3 5 c -
=ligtate SCOTBWEL | Jssert on objects’ state, and to alias objects

Checklist Check items in list, either precisely or just for presence

Alias|temsinl ist Provide an alias to items in list, which are presumed to exist (see also Checklist)

Debugging Debugging and diagnostics. Useful for checking setup is correct, for example

DebugServices Lists service class names, as picked up from configuration. Useful with AliasServices
DebugClock Reads current value of the clock
DebugObjectStore Dumps contents of the object store

CheckSpecificationsl naded | Verifies that listed MakedObjectSpecifications have been loaded into the metamodel

Rather than repeat the text here, this reference guide just consists of screenshotsof the various pages.

A.l. Bootstrapping

The bootstrapping fixtures are used to bootstrap the test framework itself. These are typically referenced
in a "BootstrapNakedObjects' page, included in the test's setup page. One option is to use the FitNesse

SetUp page.

StoryFixture

Sets up theworkflow story test. Boilerplate, should always be thefirst FitNesse fixtureincluded in apage.

19

http://fitnesse.org/FitNesse.UserGuide.SpecialPages

Reference (Online User Guide) SetConfigDirectory

D FitMesse.StoryFixture x

User Guide

= C || 9% | http://localhost: 2090/ Fithesse. StoryFixture » O~ F-
FitNesse.
DESCRIPTION
Sets up the workflow story test. Part of the bootstrapping of the test framework itself, typically referenced in
.BootstrapNakedObjects included in the test suite’s setup page. Should appear first within this setup.
ARGUMENTS
* none
CoLumns

ExampLE UsaGE

‘ org.starobjects. tested. fitnesse. StoryFixture

SetConfigDirectory

Specifies the config directory containing nakedobj ects. properties. Caled after StoryFixture
(see the section caled “StoryFixture’), and before InitNakedObjects (see the section called
“InitNakedObjects’). The DebugServices fixture (the section called “DebugServices’) can be used to
debug the set of services specified (after Naked Objects has been initialized).

DFlWesse.SeU:onﬁngrecmry X
<~ C || 9% http://localhost:5090/FitNesse.SetConfigDirectc » O~ F-
FitNesse,

SetConfigDirectory

AT

DESCRIPTION
Specifies the config directory containing nakedobjects. properties. Part of the bootstrapping of the test
framework itself, typically referenced in .BootstrapiakedObjects, prior to calling InitNakedObjects.
Where Used
ARGUMENTS
* none
CoLumns
RecentChanges | , ..

User Guide

ExampLe UsaGe

‘ set config directory | ../myapp/exploration/config

EnableExploration

Enables exploration actions if required. Should be called before InitNakedObjects (see the section called
“InitNakedObjects”).

N
o

Reference (Online User Guide) InitNakedObjects

Note that when using the DnD or HTML viewers, exploration mode meansthat there is no need to logon.
For FitNesse tests though you should specify who to login as, see the section called “LogonAs”.

[™) FitMesse EnableExploration >

« C % localhost > O F-
ﬂr-.‘ FitNesse.
@ EnableExploration

Edit
DESCRIPTION

Properties
Enables exploration actions if required. Part of the bootstrapping of the test framework itself, typically referenced

Refactor in .BootstrapNakedObjects, prior to calling InitNakedObjects.

‘Where Used

ARGUMENTS
Search

® none
Files

Versions COLUMNS

Recent Changes O O3

User Guide
ExampLE UsaGe

enable exploration

InitNakedObjects

Initializes the Naked Objects runtime using the services specified through the UseConfigDirectory fixture
(see the section called “ SetConfigDirectory”).

The CheckSpecificationsL oaded fixture (the section called “ Check SpecificationsL oaded”) can be used to
check which classes have been located from the services as aresult of initialization.

D FitNesse, InithakedObjects »

€ C % localhost > O~ F-
"\ ﬁNakedOb jects
< j

Edit
DESCRIPTION

Properties
Use to initialize Naked Objects runtime. Part of the bootstrapping of the test framework itself, typically
Refactor referenced in .BootstrapMakedObjects included in the test suite’s setup page.

‘Where Used

ARGUMENTS
Search

* none
Files
Versions CoLUMNS

RecentChanges | , oo

User Guide

ExampLE UsaGE

init naked objects

Tested Objects 1.0 Users' Guide (0.1) 21

Reference (Online User Guide) SetUp

A.2. SetUp

The setup fixtures are used to specify the running application for a particular story's setup. Specifically,
this means setting up the services that define the application, the effective date and the effective user. It
also allows the setup of arbitrary objects (typically reference/static data objects; for transactional objects
see the section called “ UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup”).

Datels

Sets the clock to a specific date and time. Thisinstalls the Fi xt ur eC ock as the implementation of the
d ock singleton (in the applib). If this fixture is not called, then the default system clock is used, which
gets the time from the host computer. The DebugClock fixture (the section called “ DebugClock™) can be
used to verify the clock state.

Google |[[=7| =l [T
[Fithesse.Datels +
€ C |l localhost > O~ F-
FitMesse.
Datels
Edit
DESCRIPTION

Properties
Sets the clock to a specific date and time. Part of the initialization for a particular story's setup, and typically
Refactor referenced in the test suite or story's own setup page.

Where Used

VARIATIONS
Search

& Datels, DatelsMow, Timels, TimelsNow
Files o all behave in the same way

Versions

Recent Changes ARGUMENTS

TS

* date

User Guid
seriuide @ in format d MMM yyyy hh:mm

CoLumns

® none

ExampLE USAGE

2 mar 2007 09:20

Unlike Naked Objects own LogonFi xt ur e, thelogin specified is not remembered to the end of the setup.
In order to run tests as a particular login it should therefore appear towards the end of the setup.

22

Reference (Online User Guide)

AliasServices

D FitNesse,LogonAs

€ C |l ¥ localhost » O- F~

FitNesse.

GgonAs

Properties

Refactor

‘Where Used

Search

Files

Versions

Recent Changes

=1

User Guide

DESCRIPTION

Logs on as a specific user. Part of the initialization for a particular story's setup, and typically referenced in the test suite or
story's own setup page. Unlike Naked Objects’ own LogonFixture, the login specified is not remembered to the end of the
setup. In order to run tests as a particular login it should therefore appear towards the end of the setup.

VARIANTS

® SwitchUser
o is effectively a synonym.
ARGUMENTS
® login name
© as returned DomainObjectContainer#getlser(}
® role name(s)
© can specify up to four.
CoLumns

® none

ExampLe UsaGe

with roles

|log0n as | fsmith ‘wim roles ‘ rpt_mgr_role,admin_role

AliasServices

Specifiesan aliasto servicesin order to invoke actions upon them. Note that the servicesare not defined by
thisfixture; for that see SetConfigDirectory fixture, section the section called “ SetConfigDirectory”. See
also DebugServices (the section called “ DebugServices’) to verify the servicesthat have been identified.

Tested Objects 1.0 Users' Guide (0.1)

23

Reference (Online User Guide)

SetUpObjects

Google | = [@
[Fithesse. AliasServices A

€« C | e localhost » O~ £~

FitHesse.

@ AliasServices

DESCRIPTION

Properties

Specifies an alias to services in order to invoke actions upon them. Mote that the services are not defined by this
Refactor fixture, instead they are read from the config directory.

Where Used
ARGUMENTS
Search

* none
Files

Wersions COLUMNS
Recent Changes | , ..o
@ the fully qualified name of the service implementation

User Guide 3
* alias=

&

@ assigns an alias to the service instance
© can also use ‘alias as’

ExampLE UsaGE

alias services

class name alias=

com.mycompany. myapp. service.claim. ClaimRepositoryinMemary claims

com.mycompany. myapp. service. claim.EmployeeRepositoryinMemory | claims

setup used for transaction/operational data objects (though UsingNakedObjectsViewerForSetup, the
section called “UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup”, is preferable). The
DebugObjectStore fixture (the section called “DebugObjectStore”) can be used to check the state of

objects created.

24

Reference (Online User Guide) User Interaction

D FitNesse, SetUpObjects

€ C % localhost > O- F-

FitNesse. g

¢ 4% SetUpObjects
Edit
DEescRIPTION
Properties
Initializes objects. Can use for either reference data or operational data. Used to initialize a particular
Refactor story's setup. Typically referenced in the test suite or story's own setup page.
Where Used
VARIATIONS
Search
® SetUpObject, SetUpObjects, SetUpTransientObject, SetUpTransientObjects
Files o the ‘transient variations do not persist the instantiated object
(V]

D

Versions

Recent Changes

>
A
@
=
=
m
=
5
w

User Guide

® fully qualified class name of object to instantiate

o occasionally useful for complex setup where there is no action that can be invoked
CoLumns
® property names of the domain object

© can be persisted later through its alias
© not all properties need to be specified
® alias=
© assigns an alias to each instance (saves having to lookup the object in the test proper)
© can be left blank, aliases will be automatically assigned

o if no alias column is provided, one will be appended and aliases automatically assigned
© can also use ‘alias as’

ExampLE USAGE

set up objects | com.mycompany. foobar.dom.employee. Employee

Name Approver alias as

Fred Smith Employee:Fred Smith

Tom Brown Employee:Fred Smith Employee: Tom Brown

Sam Jones Employee:Fred Smith Employee:Sam Jones

set up transient object | com.mycompany. foobar.dom.employee.Employee

Name Approver alias as

Bill Jackson Employee: Bill Jackson

E

i | B

A.3. User Interaction

User interaction fixtures appear in the main body of the test, for the "given" (to setup the rest of the
state of the system, typically transactional objects), for the "when" (the interaction being tested) or the
"then" (assertions on the state after the interaction being tested).

UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup

Simulates interacting with domain objects as if through aviewer. Interact with objects, check their state,
alias referenced or returned objects.

The"ForSetup” version disables checksfor visibility and usability, making it easier to reuse functionality
for setting up objects prior to a test scenario (the "given"). The DebugObjectStore fixture (the section
called “ DebugObjectStore”) can be used to check the state of objects created.

Tested Objects 1.0 Users' Guide (0.1) 25

Reference (Online User Guide)

UsingNakedObjectsViewer /
UsingNakedObjectsViewerForSetup

[Fithesse.UsingMakedObjec... *

(—

C' | % http://localhost:2 t UsingNakedObj

. ('~
FitNesse. |

UsingNakedObjectsViewer

Edit

DESCRIPTION

Properties

Simulates interacting with the domain objects as if through a viewer. Interact with objects, check their
Refactor state, alias referenced objects

T e

Where Used

VARIATIONS
Search

UsingNakedObjectsViewer, UsingNakedObjectsViewerForSetlp
Files o the ForSetUp’ version disables checks for visibility and usability
Versions
Recent Changes ARGUMENTS

.
User Guide none

CoLumns

+ on object

o the (alias of) the object to interact with
o can also use ‘object, or ‘'on’
® alias result as
o alias to assign to any result of interaction
= gither a reference, a property or the result of an action
o can also use result=', ‘alias=', ‘alias as’
« perform
o the interaction to perform (see below for further details)
o can also use 'do’, ‘interaction’, 'interaction type’
* on member
o the property, collection or action to use
© can also use ‘member’, ‘using member’, ‘using’
e thatit
o optional qualifier for interactions that make checks (see below for further details)
o can also use 'that, verb'
* with arguments
o optional argument for interactions that make checks (see below for further details)
o optional argument(s) for actions

o can also use ‘with', 'arguments’, 'parameters’, ‘with parameters’, 'for', 'for arguments’, 'for parameters’,
'value', reference’

Example usage:

[Fitiesse.UsingiNakedObjec... »

« C | % htip:/localhost b O~ F~
[~
ExampLE UsaGE
using naked objects viewer
on object |alias result as | perform using member
employees | list1 invoke action | All Employees
Where Used using naked objects viewer for set up
on object |alias result as | perform using member
employees | list1 invoke action | All Employees
iles
Alternate column headers (more formal style):
Recent Changes using naked objects viewer
object result= | interaction type | member

employees | list1 invoke action | All Employees

On properties:

26

Reference (Online User Guide) UsingNakedObjectsViewer /

UsingNakedObjectsViewerForSetup

D FitNesse, UsingMakedObjec,.,

€« C | | £ | http://localhost:9090/FitNesse.UsingNakedO » O~ F~
[~
PERFORM
‘ON PROPERTIES
‘
on object |alias as perform using that it value
object properfy P
alias check property name is hidden
e Ub.‘md check property [EEEAE is visible
alias name
o .FC check property property is disabled
object properfy .
alias check property name is enabled
Recent Changes | |object property .
alias check property name is empty
_ object properfy .
alias check property name is not empty
Ub.‘md check property property contains vu.[ue or object
alias name alias
object property does not value or object
alias check property name contain alias
Ub.‘md check set property property is valid for vu.[ue or object
alias name alias
Ub.‘md check set property property is not valid for vu.[ue or object =
alias name alias
(]D-jE‘C[check clear property s valid
alias property name
(]D-jE‘C[check clear property is not valid
alias property name
object H . get property property
alias alias for default object default name
Ub.‘md alias for list of choices get‘pmpert‘,‘ property
alias choices name
object alias for referenced property
alias object get property name
(]D-jE‘C[u[u.?s for referenced SRR property vu.[ue or object
alias object name alias
object property
alias deaypropelty name

On collections;

[™) FitMesse.Usingakedobjec...

« C' || ¥ | http:/flocalhost:9090/FitNesse.UsingNakedol > O~ F~
=]
ON COLLECTIONS 1
on object | alias as perform using member | that it reference
object alias check collection collection name | is hidden
object alias check collection collection name | is visible
object alias check collection collection name | is disabled
object alias check collection collection name | is enabled
| Where Used ‘ object alias check collection collection name | is empty
object alias check collection collection name | is not empty
object alias check collection collection name | contains object alias
object alias check collection collection name | does not contain | object alias
object alias check add to collection collection name | is valid for object alias
| Recent Changes ‘ object alias check add to collection collection name | is not valid for | object alias
object alias check remave from collection | collection name | is valid for object alias
object alias check remove from collection | collection name | is not valid for | object alias
object alias | alias for collection | get collection collection name
object alias | alias for collection | add to collection collection name object alias
object alias | alias for collection | remove from collection collection name object alias
¥l

On actions

Tested Objects 1.0 Users' Guide (0.1)

27

Reference (Online User Guide) CheckList

D FitMesse,UsingMakedObjec.., »

= C | % hitp://localhost: 2 » O~ F-
— [~]
o ﬂ O ACTIONS
_' /) . using . .
on object | alias result as perform that it with arguments
_ member
- -
ab.ﬂd check action action is hidden
alias name
object . action o
alias check action ame is visible
Where Used object . action S
5 check action is disabled
alias name
- -
ab.ﬂd check action action is usable
" alias name
object hedk acti action . lid f £ list
Versions alias check action name is valid for | argument [isi
Recent Changes ab.jeci check action action is not valig argument [ist
alias name for
User Guide : : 3
object - get action parameter action param number (0-
] ter default
alias i e P G default name based)
object alias for list of parameter get action parameter action param number (0-
alias choices choices name based)
object N N) . action o
5 alias for returned object invoke action argument [ist
alias name
If the action is a contributed action and takes =
asingle argument (ie the object contributed to), then no argument is required
+ maore than one argument, then all arguments are required (including the object being contributed to)
&

On abjects:

D FitMesse,UsingMakedObjec.., »

= C | % hitp://localhost: 2 » O~ F-
=
@ ON OBJECTS THEMSELVES
——————— |onobject |perform that it
Edit
object alis | check object | is valid
object alias | check object | s not valid
object alias | check object | is saved
object alias | check object | is not saved
object alias | save object
3
— 4

CheckList

Check itemsin list, either precisely or just for presence, using their title. Lists are either aliased results
of actions, or aliased collections within objects.

Typicaly used in the "Then", though can be helpful as away of confirming/documenting a"Given".

See also AliasltemsinList (the section called “ AliasitemslnList”), which also performs an implicit check
(will fail if the objects are not in the list) and aliases them for further use.

Reference (Online User Guide)

AliasltemsinList

[™ FitNesse, CheckList

<« C |t localhost > O~ £~
Fie; FitNesse.
\Q CheckList

Edit

DESCRIPTION

Properties

Check items in list, either precisely or just for presence. Lists are either aliased results of actions, or aliased collections within
Refactor objects. See also AliasitemsinList.

Where Used

ARGUMENTS
Search

® list alias
Files ® qualifier

o either ‘contains’ or ‘precisely contains’
Versions

RecentChanges | o) s

User Guid
ser buice o Title

* Type
© optional, concrete type

ExampLE UsaGE

check list | list1 ‘ contains

Title

Fred Smith

Tom Brown

and

check list | list1 ‘ precisely contains

Title

Fred smith

Tom Brown

Sam Jones

AliasltemsIinList

Allows an alias to be associated with items in a list. The list items are located by their title, and are
presumed to exist. This fixture can therefore also be used as away of checking for presence of itemsin

alist (similar to CheckList, the section called “CheckList”).

Typically used both in the "Given" (to simplify writing the rest of atest).

Tested Objects 1.0 Users' Guide (0.1)

29

Reference (Online User Guide)

Debugging

[Fithesse. AliasTtemsInList *

= C % hitp://localhost:© ist » O~ F~
‘_.‘--ﬁ EitNesse.
DESCRIPTION
Provide an alias to items in list, which are presumed to exist. See also Checklist,
Where Used ARGUMENTS
- COLUMNS
e title
Recent Changes | type
© the required class name (can be fully qualified, but does not need to be)
o optional; useful for collections of roles where the title given to each role might be that of the parent, and only the type
differs
* alias as

© can also use ‘alias="

ExampLE UsaGE

alias items in list | list1

title alias as

Tom Brown tomEmployee

A.4. Debugging

Debugging and diagnostics. Useful for checking setup, for example.

DebugServices

Lists service class names, as picked up from configuration. Useful with AliasServices (see the section

called “ AliasServices).

D FitMesse.DebugServices X

€« C | 1% http://localhost:9 > O- F-
.-_‘i"“ Eithesse,
&% DebugServices
Edit
DESCRIPTION

Praperties
Lists service class names (as picked up from configuration). Useful with AliasServices.
Refactor

Where Used ARGUMENTS
Search * none

Files

- CoLUMNS
Versions

* none
Recent Changes

User Guid
seriuide ExampLe UsaGE

w
o

Reference (Online User Guide) DebugClock

DebugClock

Reads the current value of the clock. Useful for debugging and diagnostics.

D Fithesse, DebugClock »

Recent Changes

€« C | ¥¢ | http://localhost:9090/FitNesse.DebugClock » O~ F-
\ @ DebugClock
DESCRIPTION
Reads current value of the clock. Useful for debugging and diagnostics.
CoLumns

L Guid
serbuide ExampLE UsAGE

debug clock

DebugObjectStore

Dumps the contents of the object store. Useful for debugging setup (through SetupObjects,
the section called “SetUpObjects’, and UsingNakedObjectsViewerForSetup, the section called
“UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup™).

[Fitiesse DebugbjectStare

Recent Changes

&« C | ¥ http://localhost:9090/Fithesse.DebugObjectStore » O~ F-
'ﬂﬂ FitNesse,
\ ﬁ DebugObjectStore
DESCRIPTION
Dumps contents of the object store. Useful for debugging and diagnostics.
CoLumns

User Guid
seriude ExampLe UsaGE

debug object store

CheckSpecificationsLoaded

Verifiesthat listed NakedObjectSpecifications have been loaded into the metamodel.

Tested Objects 1.0 Users' Guide (0.1) 31

Reference (Online User Guide)

RunViewer

| Google [= |3
D FitMesse, CheckSpedficatio. .. +
€ C |l localhost > O- F-

FitMesse.

CheckSpecificationsLoaded

DESCRIPTION

verifies that listed NakedObjectSpecifications have been loaded into the metamodel. Useful for debugging and diagnostics.

- COLUMNS
+ short name
@ name of class

ExampLE USAGE

check specifications loaded

short name

EmployeeRepositoryinMemory

ClaimRepositoryinMemary

Claimant

Claimitern

Employee

Approver
Claim

RunViewer

Runs up the DnD viewer with the current state of the objects. Thisis a great way to inspect the state of

the system, for example if atest isfailing and you can't see why.

Of course, other alternatives are writing unit tests and debugging with break points. But failing scenario
tests usually arise because of an integration issue between two different bits of the system. Being able to

have a"poke around" can be invaluable.

A.5. Tear Down

The opposite of setting up...

ShutDownNakedObjects

Thisfixture shuts down the Naked Objects runtime, releasing memory and so on. A good placeto put this

isin the test's TearDown page (which could be inherited).

32

http://fitnesse.org/FitNesse.UserGuide.SpecialPages

	Tested Objects 1.0 Users' Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Scenario Testing (aka Agile Acceptance Testing)
	1.2. Introduction to FitNesse
	1.3. How Tested Objects' Integration Works

	Chapter 2. Using the FitNesse Archetype
	2.1. Prerequisites
	2.2. Running the Archetype
	Running the archetype from the command line
	Running the archetype from m2eclipse

	2.3. Starting FitNesse Wiki
	2.4. Setting up to Run Tests
	2.5. Running the Tests

	Chapter 3. Hints and Tips
	3.1. Separate In-Progress Stories from the Backlog
	3.2. Use a Story Page to Collect A Set of Scenario Tests
	3.3. Organize Completed Stories by Component
	3.4. Structure your test using Given/When/Then
	3.5. Using the RunViewer fixture
	3.6. Factor out common "Given"s
	3.7. Use a Declarative Style for Page Names
	3.8. Run against a real database
	3.9. Set up Continuous Integration

	Appendix A. Reference (Online User Guide)
	A.1. Bootstrapping
	StoryFixture
	SetConfigDirectory
	EnableExploration
	InitNakedObjects

	A.2. SetUp
	DateIs
	LogonAs
	AliasServices
	SetUpObjects

	A.3. User Interaction
	UsingNakedObjectsViewer / UsingNakedObjectsViewerForSetup
	CheckList
	AliasItemsInList

	A.4. Debugging
	DebugServices
	DebugClock
	DebugObjectStore
	CheckSpecificationsLoaded
	RunViewer

	A.5. Tear Down
	ShutDownNakedObjects

